
Susquehanna University
Scholarly Commons
Landmark Conference Summer Research
Symposium

Jul 27th, 1:15 PM - 2:15 PM

Synthesizing Pictures From Text Using a DC-GAN
Anton Soloviev
Susquehanna University

Follow this and additional works at: http://scholarlycommons.susqu.edu/landmark

Part of the Artificial Intelligence and Robotics Commons

This Poster is brought to you for free and open access by Scholarly Commons. It has been accepted for inclusion in Landmark Conference Summer
Research Symposium by an authorized administrator of Scholarly Commons. For more information, please contact sieczkiewicz@susqu.edu.

Soloviev, Anton, "Synthesizing Pictures From Text Using a DC-GAN" (2017). Landmark Conference Summer Research Symposium. 6.
http://scholarlycommons.susqu.edu/landmark/2017/posters/6

http://scholarlycommons.susqu.edu?utm_source=scholarlycommons.susqu.edu%2Flandmark%2F2017%2Fposters%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarlycommons.susqu.edu/landmark?utm_source=scholarlycommons.susqu.edu%2Flandmark%2F2017%2Fposters%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarlycommons.susqu.edu/landmark?utm_source=scholarlycommons.susqu.edu%2Flandmark%2F2017%2Fposters%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarlycommons.susqu.edu/landmark?utm_source=scholarlycommons.susqu.edu%2Flandmark%2F2017%2Fposters%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=scholarlycommons.susqu.edu%2Flandmark%2F2017%2Fposters%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarlycommons.susqu.edu/landmark/2017/posters/6?utm_source=scholarlycommons.susqu.edu%2Flandmark%2F2017%2Fposters%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:sieczkiewicz@susqu.edu

RESEARCH POSTER PRESENTATION DESIGN © 2015

www.PosterPresentations.com

Generative Adversarial Text-to-Image Synthesis (Reed et al., 2016) is a
model that can synthesize images based on given text – we have worked
to try to apply to different data and to try to improve results seen in the
original paper. The model performs two main tasks – it collects relevant
information about the images to form a text feature representation of
each of the images and it uses these learned text features to then
synthesize images from given (new) text. To accomplish this, the model
uses a DC-GAN (deep convolutional generative adversarial network) which
has been conditioned on the text features coming from the visually-
discriminative vector representations of the images that are assembled
from the training data set. The features are then encoded by a hybrid
character-level CRNN (convolutional recurrent neural network) to achieve
feed-forward inference. There are several algorithms that can be used to
produce synthesized images: GAN, GAN-CLS, GAN-INT, and GAN-INT-CLS.
Each of those algorithms have varying results; their performance depends
on the type of dataset used to train them, and the type of results you
want to see from your input text.

We apply this model to images gathered from the ImageNet datasets, the
COCO (Common Objects in Context) dataset, among others. Raw images
are needed to teach the model text feature representations. On top of
that, the data we used also contains torch files, which are essential as they
have the human transcribed descriptions of the images based on the
scene and objects in each image. The descriptions of the images are used
to train the model with the images to produce inference between the
images and the text. As new text is fed into the model, synthesized images
are produced. The model yields good results if trained with the
appropriate algorithm for the dataset. This allows you experiment with
different algorithms and datasets to then see what kind of interesting
results it can produce. Generative Adversarial Text-to-Image Synthesis
ultimately shows you the power of GANs, as it can be used to produce
brand-new, realistic images from text.

ABSTRACT & INTRODUCTION

OBJECTIVES

The core of this model is a neural network called GAN (Generative
Adversarial Network). Neural networks are structures (usually purely
implemented in code) that mimic the brain. First, data needs to be
encoded in a way that the neural network can successfully use it. Once
that input is provided to the neural network, then it goes through an
activation function which decides whether this input should be passed on.
Each neuron/node in a neural network is connected with other neurons in
other layers. The connections are called synapses and each of the
synapses have a “weight” value associated with them, which is scalar
value that modifies how much a synapse affects the neural network. The
error in the performance of the model tells you how to modify your
weights. The beauty of neural networks comes from the fact that they can
modify their weights by themselves, using the equations you
implemented in their code. The goal of neural networks is to minimize
error, by doing so, you’re at the same time optimizing (adjusting) the
network to have the best possible weights.

The more layers there are in the neural network the more complex it is,
and that’s why neural networks are often called “deep.” With more
complexity of the neural network and more data, come better results. A
CNN (Convolutional Neural Network) is a very popular (usually deep)
neural network. Every CNN works on three basic principles. It first builds
up convolutions (in the convolutional layer), which are just mathematical
descriptions of the particular features that the layer is trying to recognize
(e.g., lines, circles, crosses). Since every image is made up of pixels, you
can define a “window” of a certain number of pixels (e.g., four) which will
be your filter (also called neuron or kernel) that will compare the pixels it
sees in that spot of the image to your filter so that it can tell what kind of
shape appears in that spot – each little filtered spot is called a
convolution. The second step is to take each of these newly formed
convolutions and to combine them together to create a more general
representation of the convolutions which are close together – this is called
pooling and it’s done in the pooling layer. A more complicated CNN
repeats this process of creating convolutions and then pooling them
together at least a couple of times; this is to create abstract
representations of the shapes (e.g., lines then curves then mouths and
eyes then faces). Then finally, the last layer(s) will represent the final
pooled convolutions as an N-dimensional vector. This vector represents
the probability of the image corresponding to a particular class (e.g., cat
or dog). Keep in mind that a deconvolution is in essence, a CNN but in
reverse.

CNNs, like many other neural networks, use backpropagation when
training. It essentially calculates the gradient of the loss function
(corresponding to the error) considering the values of the weights in the
network, so that the network can go back and modify these weights to
then minimize the error. The process of training the network to minimize
the error rate while modifying its weights is called gradient descent.

THEORY

The model we used is the Generative Adversarial Text-to-Image Synthesis
(Reed et al., 2016) – we directly used Scott Reed’s Torch implementation
available on GitHub. GANs consist of two networks, a generator G (which
generates the actual images), and a discriminator D (which tries to tell if the
generated image is a fake. The goal of the generator is to create a realistic
image so that the discriminator could be fooled into thinking it’s a real (non-
synthesized) image. The two networks compete in a two-player minimax
game; i.e., they try to find decision rules that would give minimum possible
loss for worst case (maximum loss) scenarios:

We also want to obtain (deep) symmetric structured joint embedding, which
will tell us how to represent the image. To do this, we must look at the text
descriptions of the images and then extract vectors that could represent and
discriminate between each of these images – we use a deep convolutional
and recurrent (interconnected) text encoders. The text classifier optimizes
the structures loss:

In short, the text encoding will form higher affinity to images that have a
similar class, compared to images that are very different (dissimilar class).

The main approach to this problem is to train a DC-GAN conditioned on the
learned text features and encoded by a hybrid character-level CRNN
(Convolutional Recurrent Neural Network) to then have the generator and
discriminator perform feed-forward inference on the text features.

Generator: The training begins with the discriminator looking at very poorly
generated images (made up largely of noise), but as the training continues,
the generator becomes better at generating more realistic images until the
discriminator thinks they are real. The description embedding is compressed
and concatenated to the noise vector to provide a better result. The
generator then produces inference in the deconvolution. The synthetic
(generated) image �𝑥𝑥 is defined as �𝑥𝑥 ≔ 𝐺𝐺(𝑧𝑧,φ(t)) , meaning it’s generated by
using the noise and the data from φ(t) -- which is image encoding coming
from the DCNN. The generator also learns to tell (score) wrong class labels
(mismatched text) of the images
Discriminator: The D network will process the images using the convolutions
(which I described earlier) from the images. Particularly, it uses layers of
stride-2 convolutions and leaky ReLU for the rectification/activation.
Subsequently, the image will follow the process of pooling and reducing the
dimensionality in the fully connected layer. In a nutshell, we repeat the
process of replicating the description embedding and concatenation, to then
carry out the convolutions and rectification and then calculate the final score
for the discriminator.

We have built several computers for deep learning so that we could train and
test our models. Besides having 20-thread CPUs, the computers have
GTX1080Ti’s so set them up to work with the GPU versions of TensorFlow and
Torch. This model in particular, uses Torch and Lua. It takes about three days
to fully train the model on 200 iterations. The batch size significantly affects
the speed of the training but we have used around 1500 images on average,
per iteration.
We decided to use the COCO dataset because there it contains more than
82,000 images and 5 (text) descriptions per image. The other two common
datasets that we have tried are the Oxford-102 Flowers and the CUB datasets.

RESULTS

CONCLUSIONS
To summarize, we have found this model to perform well with the original
data and text, and not as much with other/new data and text.
Furthermore, we have seen that using many descriptions for the images
produces better results. Also, that the GAN-CLS algorithm performs better
than the GAN-INT-CLS algorithm with the COCO dataset. Perhaps this
problem can be fixed by simply changing some parameters, or by further
modification of the GAN-INT-CLS implementation. Moreover, we found
that that training much longer produced better results.
Additionally, this model takes a long time to run -- even on a powerful
computer -- we were actually running four different instances of the
model (with different parameters, algorithms, etc.). This is because the
model is not optimized to use the entire GPU. We have seen it use only
about 3.4GB of VRAM (out of 11GB). It must be possible to decrease the
training time for the model if we allow it to use all of the VRAM on the
GPU. REFERENCES

• Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., & Lee, H. (2016,
June 05). Generative Adversarial Text to Image Synthesis. Retrieved July
22, 2017, from https://arxiv.org/abs/1605.05396

• R. (2016, October 30). Reedscot/icml2016. Retrieved July 24, 2017,
from https://github.com/reedscot/icml2016

• Reed, S., Akata, Z., Schiele, B., & Lee, H. (2016, May 17). Learning Deep Representations of
Fine-grained Visual Descriptions. Retrieved July 22, 2017, from
https://arxiv.org/abs/1605.05395

• Deshpande, A. (n.d.). A Beginners Guide To Understanding Convolutional Neural Networks.
Retrieved July 22, 2017, from https://adeshpande3.github.io/adeshpande3.github.io/A-
Beginners-Guide-To-Understanding-Convolutional-Neural-Networks/

• Convolutional neural network. (2017, July 22). Retrieved July 22, 2017, from
https://en.wikipedia.org/wiki/Convolutional_neural_network

• Gradient descent. (2017, July 04). Retrieved July 22, 2017, from
https://en.wikipedia.org/wiki/Gradient_descent

• A friendly introduction to Convolutional Neural Networks and Image Recognition. (2017,
March 20). Retrieved July 22, 2017, from https://www.youtube.com/watch?v=2-
Ol7ZB0MmU

• Minimax. (2017, July 13). Retrieved July 22, 2017, from
https://en.wikipedia.org/wiki/Minimax

Acknowledgements
This work was supported by NSF grant CCF-1421734. Also, I thank Scott Reed (et al.) for
their work on their paper and Reed’s implementation of the model.

We have taken an already existing model to try to improve (build upon) it
and apply it to a different dataset. We wanted the improvements to be
visual, so you would be able to tell if the model performed better just by
looking at the results. We also wanted to make the model train on new data
that no one has previously used. Essentially, by applying different
algorithms to this model, we would be able to see if the model performed
better or worse.
Additionally, we wanted to see how well this model performs when
compared to other models. As well as, how this particular model performs
when different databases and text captions are used.

The image trained on Reed’s G and T networks.

The image trained on my 200 iterations of G and Reed’s T networks.

Both images were captioned “a group of people on skis stand in the
snow.”

Susquehanna University, Department of Mathematical Sciences
Anton Soloviev

Synthesizing Pictures From Text Using a DC-GAN

MODEL
We have tried using several algorithms in order to test different models:
GAN-CLS, GAN-INT, and GAN-INT-CLS. It seems that GAN-INT-CLS does the
best job overall when generating from varied databases. GAN-CLS has
matching-aware discrimination, meaning that the discriminator can signal
the generator, to help it learn. GAN-INT uses interpolation between the
embeddings of the training set captions. GAN-INT-CLS combines the GAN-
CLS and GAN-INT algorithms.
GAN-INT-CLS was not originally implemented for the COCO dataset in the
GitHub code. We have made the GAN-INT-CLS model work by creating
classes (in different corresponding folders) for the different images and
modifying some code. However, after a long training time, GAN-INT-CLS
ran into the problem of looping the output images. Perhaps the problem
was that the discriminator learns to trick the generator by not using a lot
of noise in its input (which is something it should not do).

20 iterations (20G, Reed’s T) of GAN-INT-CLS, t1 Same parameters, but at 30 iterations.
Both images had the caption: “a man in a wet suit riding a surfboard on a wave.”

GAN-CLS performed quite well when I used my training data for the G, and
Scott Reed’s training data for T. It performed worse when I used my own T
-- even with Reed’s data for G.

GAN-CLS 200G iterations and Reed’s T. GAN-CLS, 200G and 190T iterations.
Both images had the caption: “a pitcher is about to throw the ball to the batter.”

[http://cs231n.github.io/neural-networks-1/] [https://www.strong.io/blog/deep-learning-applications-saas]

[http://www.mdpi.com/1424-8220/17/7/1535/htm]

[http://web.eecs.umich.edu/~honglak/icml09-ConvolutionalDeepBeliefNetworks.pdf]

[https://sebastianraschka.com/faq/docs/visual-backpropagation.html] [https://sebastianraschka.com/faq/docs/closed-form-vs-gd.html

[https://github.com/reedscot/icml2016]

[http://www.kdnuggets.com/2017/01/generative-adversarial-
networks-hot-topic-machine-learning.html

https://arxiv.org/abs/1605.05396
https://arxiv.org/abs/1605.05395
https://en.wikipedia.org/wiki/Convolutional_neural_network
https://en.wikipedia.org/wiki/Gradient_descent
https://www.youtube.com/watch?v=2-Ol7ZB0MmU

	Susquehanna University
	Scholarly Commons
	Jul 27th, 1:15 PM - 2:15 PM

	Synthesizing Pictures From Text Using a DC-GAN
	Anton Soloviev

	Slide Number 1

