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Generative Adversarial Text-to-Image Synthesis (Reed et al., 2016) is a 
model that can synthesize images based on given text – we have worked 
to try to apply to different data and to try to improve results seen in the 
original paper. The model performs two main tasks – it collects relevant 
information about the images to form a text feature representation of 
each of the images and it uses these learned text features to then 
synthesize images from given (new) text. To accomplish this, the model 
uses a DC-GAN (deep convolutional generative adversarial network) which 
has been conditioned on the text features coming from the visually-
discriminative vector representations of the images that are assembled 
from the training data set. The features are then encoded by a hybrid 
character-level CRNN (convolutional recurrent neural network) to achieve 
feed-forward inference. There are several algorithms that can be used to 
produce synthesized images: GAN, GAN-CLS, GAN-INT, and GAN-INT-CLS. 
Each of those algorithms have varying results; their performance depends 
on the type of dataset used to train them, and the type of results you 
want to see from your input text.

We apply this model to images gathered from the ImageNet datasets, the 
COCO (Common Objects in Context) dataset, among others. Raw images 
are needed to teach the model text feature representations. On top of 
that, the data we used also contains torch files, which are essential as they 
have the human transcribed descriptions of the images based on the 
scene and objects in each image. The descriptions of the images are used 
to train the model with the images to produce inference between the 
images and the text. As new text is fed into the model, synthesized images 
are produced. The model yields good results if trained with the 
appropriate algorithm for the dataset. This allows you experiment with 
different algorithms and datasets to then see what kind of interesting 
results it can produce. Generative Adversarial Text-to-Image Synthesis 
ultimately shows you the power of GANs, as it can be used to produce 
brand-new, realistic images from text.

ABSTRACT & INTRODUCTION

OBJECTIVES

The core of this model is a neural network called GAN (Generative 
Adversarial Network). Neural networks are structures (usually purely 
implemented in code) that mimic the brain. First, data needs to be 
encoded in a way that the neural network can successfully use it. Once 
that input is provided to the neural network, then it goes through an 
activation function which decides whether this input should be passed on. 
Each neuron/node in a neural network is connected with other neurons in 
other layers. The connections are called synapses and each of the 
synapses have a “weight” value associated with them, which is scalar 
value that modifies how much a synapse affects the neural network. The 
error in the performance of the model tells you how to modify your 
weights. The beauty of neural networks comes from the fact that they can 
modify their weights by themselves, using the equations you 
implemented in their code. The goal of neural networks is to minimize 
error, by doing so, you’re at the same time optimizing (adjusting) the 
network to have the best possible weights. 

The more layers there are in the neural network the more complex it is, 
and that’s why neural networks are often called “deep.” With more 
complexity of the neural network and more data, come better results. A 
CNN (Convolutional Neural Network) is a very popular (usually deep) 
neural network. Every CNN works on three basic principles. It first builds 
up convolutions (in the convolutional layer), which are just mathematical 
descriptions of the particular features that the layer is trying to recognize 
(e.g., lines, circles, crosses). Since every image is made up of pixels, you 
can define a “window” of a certain number of pixels (e.g., four) which will 
be your filter (also called neuron or kernel) that will compare the pixels it 
sees in that spot of the image to your filter so that it can tell what kind of 
shape appears in that spot – each little filtered spot is called a 
convolution. The second step is to take each of these newly formed 
convolutions and to combine them together to create a more general 
representation of the convolutions which are close together – this is called 
pooling and it’s done in the pooling layer. A more complicated CNN 
repeats this process of creating convolutions and then pooling them 
together at least a couple of times; this is to create abstract 
representations of the shapes (e.g., lines then curves then mouths and 
eyes then faces). Then finally, the last layer(s) will represent the final 
pooled convolutions as an N-dimensional vector. This vector represents 
the probability of the image corresponding to a particular class (e.g., cat 
or dog). Keep in mind that a deconvolution is in essence, a CNN but in 
reverse.

CNNs, like many other neural networks, use backpropagation when 
training. It essentially calculates the gradient of the loss function 
(corresponding to the error) considering the values of the weights in the 
network, so that the network can go back and modify these weights to 
then minimize the error. The process of training the network to minimize 
the error rate while modifying its weights is called gradient descent. 

THEORY

The model we used is the Generative Adversarial Text-to-Image Synthesis 
(Reed et al., 2016) – we directly used Scott Reed’s Torch implementation 
available on GitHub. GANs consist of two networks, a generator G (which 
generates the actual images), and a discriminator D (which tries to tell if the 
generated image is a fake. The goal of the generator is to create a realistic 
image so that the discriminator could be fooled into thinking it’s a real (non-
synthesized) image. The two networks compete in a two-player minimax 
game; i.e., they try to find decision rules that would give minimum possible 
loss for worst case (maximum loss) scenarios:

We also want to obtain (deep) symmetric structured joint embedding, which 
will tell us how to represent the image. To do this, we must look at the text 
descriptions of the images and then extract vectors that could represent and 
discriminate between each of these images – we use a deep convolutional 
and recurrent (interconnected) text encoders. The text classifier optimizes 
the structures loss:

In short, the text encoding will form higher affinity to images that have a 
similar class, compared to images that are very different (dissimilar class).  

The main approach to this problem is to train a DC-GAN conditioned on the 
learned text features and encoded by a hybrid character-level CRNN 
(Convolutional Recurrent Neural Network) to then have the generator and 
discriminator perform feed-forward inference on the text features.

Generator: The training begins with the discriminator looking at very poorly 
generated images (made up largely of noise), but as the training continues, 
the generator becomes better at generating more realistic images until the 
discriminator thinks they are real. The description embedding is compressed 
and concatenated to the noise vector to provide a better result. The 
generator then produces inference in the deconvolution. The synthetic 
(generated) image �𝑥𝑥 is defined as �𝑥𝑥 ≔ 𝐺𝐺(𝑧𝑧,φ(t)) , meaning it’s generated by 
using the noise and the data from φ(t) -- which is image encoding coming 
from the DCNN. The generator also learns to tell (score) wrong class labels 
(mismatched text) of the images 
Discriminator: The D network will process the images using the convolutions 
(which I described earlier) from the images. Particularly, it uses layers of 
stride-2 convolutions and leaky ReLU for the rectification/activation. 
Subsequently, the image will follow the process of pooling and reducing the 
dimensionality in the fully connected layer. In a nutshell, we repeat the 
process of replicating the description embedding and concatenation, to then 
carry out the convolutions and rectification and then calculate the final score 
for the discriminator. 

We have built several computers for deep learning so that we could train and 
test our models. Besides having 20-thread CPUs, the computers have 
GTX1080Ti’s so set them up to work with the GPU versions of TensorFlow and 
Torch. This model in particular, uses Torch and Lua. It takes about three days 
to fully train the model on 200 iterations. The batch size significantly affects 
the speed of the training but we have used around 1500 images on average, 
per iteration. 
We decided to use the COCO dataset because there it contains more than 
82,000 images and 5 (text) descriptions per image. The other two common 
datasets that we have tried are the Oxford-102 Flowers and the CUB datasets.

RESULTS

CONCLUSIONS
To summarize, we have found this model to perform well with the original 
data and text, and not as much with other/new data and text. 
Furthermore, we have seen that using many descriptions for the images 
produces better results. Also, that the GAN-CLS algorithm performs better 
than the GAN-INT-CLS algorithm with the COCO dataset. Perhaps this 
problem can be fixed by simply changing some parameters, or by further 
modification of the GAN-INT-CLS implementation. Moreover, we found 
that that training much longer produced better results.
Additionally, this model takes a long time to run -- even on a powerful 
computer -- we were actually running four different instances of the 
model (with different parameters, algorithms, etc.). This is because the 
model is not optimized to use the entire GPU. We have seen it use only 
about 3.4GB of VRAM (out of 11GB). It must be possible to decrease the 
training time for the model if we allow it to use all of the VRAM on the 
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We have taken an already existing model to try to improve (build upon) it 
and apply it to a different dataset. We wanted the improvements to be 
visual, so you would be able to tell if the model performed better just by 
looking at the results. We also wanted to make the model train on new data 
that no one has previously used. Essentially, by applying different 
algorithms to this model, we would be able to see if the model performed 
better or worse.
Additionally, we wanted to see how well this model performs when 
compared to other models. As well as, how this particular model performs 
when different databases and text captions are used. 

The image trained on Reed’s G and T networks.

The image trained on my 200 iterations of G and Reed’s T networks.

Both images were captioned “a group of people on skis stand in the 
snow.”
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MODEL
We have tried using several algorithms in order to test different models: 
GAN-CLS, GAN-INT, and GAN-INT-CLS. It seems that GAN-INT-CLS does the 
best job overall when generating from varied databases. GAN-CLS has 
matching-aware discrimination, meaning that the discriminator can signal 
the generator, to help it learn. GAN-INT uses interpolation between the 
embeddings of the training set captions. GAN-INT-CLS combines the GAN-
CLS and GAN-INT algorithms.
GAN-INT-CLS was not originally implemented for the COCO dataset in the 
GitHub code. We have made the GAN-INT-CLS model work by creating 
classes (in different corresponding folders) for the different images and 
modifying some code. However, after a long training time, GAN-INT-CLS 
ran into the problem of looping the output images. Perhaps the problem 
was that the discriminator learns to trick the generator by not using a lot 
of noise in its input (which is something it should not do). 

20 iterations (20G, Reed’s T) of GAN-INT-CLS, t1          Same parameters, but at 30 iterations.
Both images had the caption: “a man in a wet suit riding a surfboard on a wave.”

GAN-CLS performed quite well when I used my training data for the G, and 
Scott Reed’s training data for T. It performed worse when I used my own T 
-- even with Reed’s data for G. 

GAN-CLS 200G iterations and Reed’s T.                         GAN-CLS, 200G and 190T iterations.
Both images had the caption: “a pitcher is about to throw the ball to the batter.”
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