Department

Biology

Author Type

Undergraduate Student

Submission Type

Event

Start Date

27-7-2017 3:15 PM

End Date

27-7-2017 4:15 PM

Description

The practice of hydraulic fracking has increased over the years especially in Pennsylvania where most of the subterraneous gas-rich Marcellus Shale formations are located. Our previous work showed that headwater streams in proximity to hydraulic fracking operations have significantly different bacterial assemblages as compared to un-impacted streams in central PA. Aquatic bacterial communities are of great importance because they are often the ‘first-responders’ to environmental perturbations. We are interested in which bacteria become enriched, as this might serve as robust biomarkers of fracking, and can potentially biodegrade constituents of fracking fluids. In this study, we plan to expand upon our previous work to identify additional sentinel bacterial taxa in other areas in PA (Northeast and Southwest) heavily impacted by fracking. Water and sediment samples have been collected from Northern Pennsylvania (n=31) and Southwestern (n=11) regions upstream and downstream of fracking activities. Bacterial community profiles of these samples were generated via high-throughput sequencing of the 16S rRNA, a robust phylogenetic marker for bacterial identification. The data generated provide a snapshot of all bacteria taxa present and their relative abundance. Thus, differences in bacterial community structure between impacted and un-impacted environments can help glean which bacterial taxa are responding to environmental perturbations associated with fracking. This research can help us generate a list of potential bioindicators of nascent fracking activities and can be used to help track impacts and bioremediation potential within environmental scenarios.

Share

COinS
 
Jul 27th, 3:15 PM Jul 27th, 4:15 PM

Bacterial Bio-indicators of Marcellus Shale Activities in Pennsylvania: A Molecular Ecology Survey

The practice of hydraulic fracking has increased over the years especially in Pennsylvania where most of the subterraneous gas-rich Marcellus Shale formations are located. Our previous work showed that headwater streams in proximity to hydraulic fracking operations have significantly different bacterial assemblages as compared to un-impacted streams in central PA. Aquatic bacterial communities are of great importance because they are often the ‘first-responders’ to environmental perturbations. We are interested in which bacteria become enriched, as this might serve as robust biomarkers of fracking, and can potentially biodegrade constituents of fracking fluids. In this study, we plan to expand upon our previous work to identify additional sentinel bacterial taxa in other areas in PA (Northeast and Southwest) heavily impacted by fracking. Water and sediment samples have been collected from Northern Pennsylvania (n=31) and Southwestern (n=11) regions upstream and downstream of fracking activities. Bacterial community profiles of these samples were generated via high-throughput sequencing of the 16S rRNA, a robust phylogenetic marker for bacterial identification. The data generated provide a snapshot of all bacteria taxa present and their relative abundance. Thus, differences in bacterial community structure between impacted and un-impacted environments can help glean which bacterial taxa are responding to environmental perturbations associated with fracking. This research can help us generate a list of potential bioindicators of nascent fracking activities and can be used to help track impacts and bioremediation potential within environmental scenarios.